
C 

z 

b N A 8 A  T E C H N I G A L  
M E M O R A N D U M  

$ 

_. 
(I 

0 

* t: (PAGES) 

IACCESSION NUMBER) z 
2 

s 
(CATEGORY) 

d 

(NASA CR OR TMX OR F d  NUMBER) 

NASA TM X-522 

L 
INVESTIGATION OF A SUBMERGED 
NOZZLE FOR SOLID ROCKETS 

by Reino J. Salmi and James J. Pelouch Jr. 
Lewis Research Center 
Cleveland, Ohio 

TECHNICAL PAPER proposed for presentation at Second Solid 
Propulsion Conference sponsored by the American Institute 
of Aeronautics and Astronautics and the Interagency 
Chemical Rocket Propulsion Group 
Anaheim, California, June 6-8, 1967 

-7 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION WASHINGTON, D.C. 9, 1967 



4 

INVESTIGATION OF A SUBMERGED 

NOZZLE FOR SOLID ROCKETS 

by Reino J, Salmi and James J. Pelouch Jr. 

Lewis Research Center 
Cleveland, Ohio 

TECHNICAL PAPER proposed for presentation at 

Second Solid Propulsion Conference 
sponsored by the American Institute of Aeronautics and Astronautics 

and the Interagency Chemical Rocket Propulsion Group 
Anaheim, California, June 6-8, 1967 

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION 



INVESTIGATION OF A SUBWGED NOZZU FOR SOLID ROCKETS 

by Reino J. Salmi and James J. Pelouch Jr. 

Lewis Research Center 
Kational Aeronautics apd Space Administration 

Cleveland, Ohio 

4 ~ ~ O ~ C T ~ O N  

The provision of t h rus t  vector control  f o r  sol- 
id rockets is a continuing problem. One of the pro- 
posed methods of providing TVC f o r  the  260-inch sol- 
i d  rocket is khat of a gimballed nozzle, u t i l i z i n g  
a freegetanding nozzle which i s  supported ex terna l ly  
by a egher lca lbear ing  from the rocket aft-end 
caelng. As shown i n  the schematic drawing of fig- 
ure 1, the  spherical  bearing is  located i n  t h e  re- 
gion of t h e  nozzle throat ,  with the  convergent sec- 
t i o n  of the  convergent-divergent nozzle submerged 
within the  aft-end casing. I n  addi t ion t o  provid- 
ing the f e a s i b i l i t y '  of gimballing, the submerged 
nozzle i s  located close t o  the  propellant grain, 
thereby reducing the  overa l l  length of the rocket. 

The submerged nozzle w i l l  be tes ted  on the  
260-inch s o l i d  rocket motor (SL-3) , which is sched- 
uled f o r  f i r i n g  i n  mid-year 1967. For t h i s  t e s t ,  
however, the nozzle.wil1 not be gimballed and the  
annular clearance space between the  nozzle l i p  and 
the aft-end casing, which is  necessary f o r  the  
gimballing action, w i l l  be protected by insulat ing 
compounds. The SL-3 nozzle was or ig ina l ly  design- 
ed with t h e  assumption t h a t  the flow i n  the annu- 
lar channel would be e s s e n t i a l l y  stagnant and not 
subject t o  the  erosive act ion of the  hot exhaust 
gases flowing i n t o  the  nozzle. However, fur ther  
study of the nozzle created some concern f o r  the  
v a l i d i t y  of t h i s  assumption and f o r  the  s t r u c t u r a l  
i n t e g r i t y  of the nozzle. It appeared possible t h a t  
t h e  hot exhaust gases flowing out of the  assymetric 
grain port  could induce pressure unbalances t h a t  
would cause a circumferential  flow of t h e  exhaust 
gases a t  high Mach numbers i n  the annular channel. 
Figure 2 presents a cutaway isometric drawing t h a t  
i l l u s t r a t e s  t h e  possible flow phenomena. The ex- 
haust flow is  shown enter ing the annular channel 
i n  the region between the  grain lobes, flowing c i r -  
cumferentially i n  t h e  annular channel behind the  
nozzle l i p  and ex i t ing  i n  the  region d i r e c t l y  be- 
hind the grain lobes. It was reasoned t h a t  the  
region d i rec t lybehind  t h e  grain lobes would expe- 
rience lower pressures due t o  separation of the  
exhaust gases from the blunt  base. An experimen- 
t a l  invest igat ion of the  probelm was, therefore,  
undertaken t o  determine whether or not it exis ted 
and its possible severity.  

APPARAWS AM) PROCEDURE 

Tests t o  determine t h e  veloci ty  and direct ion 
of the exhaust flow i n  the annular channel were 
made a t  t h e  Lewis Research Center with an 0.07- 
scale  model of t h e  260-inch s o l i d  rocket. Com- 
pressed a i r  was used t o  simulate t h e  exhaust gases. 
The t e s t s  were made i n  two d i f fe ren t  f a c i l i t i e s .  
The i n i t i a l  t e s t s  wePe made i n  an a l t i t u d e  t e s t  
chamber. I n  these t e s t s ,  the  model chamber pres- 
sure w a s  set a t  20 psia  and the  t e s t  chamber pres--  
sure a t  2 psia.  Later tests were made i n  an atmo- 
spheric t e s t  stand shown i n  f igure 4. 
here were made with the  model chamber pressure s e t  
a t  30 psia. 

The t e s t s  

High pressure a i r  was brought t o  the  

annular chamber between t h e  simulated propellant 
grain and t h e  outer  s h e l l  through the  pipe shown 
enter ing the  model s ide towards the  closed end. 

determined from high-speed movies of the motions 
of wool t u f t s  attached t o  the channel walls,  A 
transparent aft-end caging was used t o  accommodate 
the  visual observations. 
merged nozzle which was made of s t e e l .  It was cut 
o f f  jus t  downstream of thb throa t  since the  dtTct8- 
gent part of the nozzle would have no e f f e c t  on the 
entrance region flow. The back s ide  of the nozzle 
l i p  which forms one wall  of the  annular channel was 
painted white and black t u f t s  were cemented t o  it. 
The transparent aft-end casing, which is  shown in  
f igure 6, had red t u f t s  attached t o  it on t h a t  par t  
of i t s  surface which formed'the other wall of the 
annular channel. The d j f fe ren t  colored t u f t s  d i r -  
fe ren t ia ted  between the  flows along each wall. 

The flow direct ion i n  the annular channel wan 

Figure 5 shows the sub- 

The flow ve loc i t ies  in  the annular channel alid 
on the nozzle surface were determined from measuze- 
ments of t h e  l o c a l  s t a t i c  and t o t a l  pressures. One 
row of o r i f i c e s  was ins ta l led  i n  the  nozzle and the  
aft-end nozzle assembly was rotated r e l a t i v e  t o  the 
simulated propellant grain t o  obtain circumferen- 
t i a l  measurements. 
with mercury and TBE manometer boards and recorded 
photographically. The t o t a l  pressure probes i n  the  
annular passage could be rotated remotely t o  obtajn 
the maximum value. 
indicated the  direct ion of the channel flow a t  t h a t  
point. 

The pressures were measured 

The posi t ion of the  probe a l so  

To simulate the emanation of burning gases from 
the  surface of t h e  so l id  propellant grain, the  
model grains were fabricated from sheet s t e e l  with 
uniformly spaced 3/16-inch diameter holes. Two of 
the  grains used a r e  shown i n  f igure 7. 
area of t h e  holes was about 40 percent of the noz- 
'z le  th roa t  area t o  assure choking of the  holes and 
uniform a i r  dis t r ibut ion.  The grain shown on the 
lef t  i s  a f u l l  grain with f l a t  ends on the  lobes. 
The f la t  ends s l a n t  inward at  an angle of 30 de- 
grees from a normal. 
w i l l  be tes ted  on the SL-3 motor. 
on the r i g h t  was used t o  simulate t h e  condition 
where t h e  grain has regressed 34 percent due t o  
burning. The grain lobes a re  considerably smaller 
and the  port  a rea  enlarged. 
grain with modified lobe ends was also tes ted.  A s  
shown i n  f igure 8, the ends of the grain lobes were 
shaped l i k e  wedges having 90 degree included angles. 
It was thought t h a t  t h i s  modification might in -  
crease t h e  lobe base pressures and help a l l e v i a t e  
the  poten t ia l  c i rculat ion problem. 

Two nozzle geometries were included i n  the 

The t o t a l  

It is the type of grain t h a t  
The grain shown 

A f u l l  three-lobe 

tests. The f i r s t  nozzle simulated t h e  i n i t i a l  SL-3 
nozzle design. The second nozzle contour, which 
was f i n a l l y  incorporated in to  the SL-3 motor, was 
established on the  bas i s  of t e s t  on the f i r s t  noz- 
z le .  These modifications w i l l  be discussed l a t e r .  
Figure 9 shows a comparison between t h e  i n i t i a l  
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model nozzle contour and t h e  i n i t i a l  SL-3 motor. 
The i n i t i a l  model nozzle d id  not duplicate exac t ly  
the  geometry of the i n i t i a l  SL-3 design because of 
a design e r r o r  and some modifications t o  allow more 
e f f ec t ive  t u f t  observation. These differences 
should not have a la rge  e f f e c t  on the  r e su l t s ,  how- 
ever. 

- 

RTCSULTS 

The r e s u l t s  obtained with the  first nozzle and 
t h e  f u l l  s i ze  flat-ended grain are shown i n  f igu re  
10. This view assumes a transparent aft-end casing 
so t h a t  t he  region of rec i rcu la t ion  i n  t h e  annular 
clearance space between the nozz le l ip  and the  aft-  
end casing can be seen as the  white annular area. 
The arrows on the  l e f t  s ide  o f  the  white annulus 
ind ica te  d i rec t ion  of  the flow observed from the  
t u f t  movies. A s  w a s  expected, the  exhaust gases 
entered the  annular passage i n  the  region midway 
between the  gra in  lobes, flowed along t h e  channel 
and exited in  the region d i r e c t l y  behind the  gra in  
lobes. The flow ve loc i t i e s  are shown on the  r i g h t  
hand s ide  of t h e  annular passage by the  l i n e s  of 
constant Mach number. 
were s l i g h t l y  grea te r  than 0.2 and occurred near 
the  region d i r e c t l y  behind the  gra in  lobes. The 
minimum values were less than 0.05 and they  occur- 
red i n  t h e  area midway between the  gra in  lobes. 
The e f f ec t s  of modifying the  gra in  lobe ends t o  the  
wedge shape are presented i n  f igure  11. The modi- 
f i ca t ion  had only a s l i g h t  e f f e c t  on the  highest  
Mach numbers i n  t h e  region behind the  gra in  lobes 
but  t h e  low Mach number region extended over a much 
wider area. The same general flow d i rec t ion  pat- 
t e r n  w a s  observed as with the  f l a t  ended grain. 
Figure 12  presents t he  r e s u l t s  obtained with the  
34 percent regressed gra in  which simulated the  ef- 
f e c t s  of grain consumption due t o  burning. The 
flow pa t te rn  i n  the passage appeared t h e  same as 
with the  f u l l  grains bu t  it seemed more turbulent.  
The flow Mach numbers w e r e  considerably reduced, 
however. 
therefore, indicated. 

The highest  Mach numbers 

A favorable e f f e c t  of grain burning is, 

A s  a r e s u l t  of t h e  exhaust flow pa t te rns  and 
Mach numbers observed from t h e  tests of the first 
nozzle, modifications were made t o  the design of 
t h e  SL-3 nozzle. These modifications are shown i n  
figure 13. Additional Pban insulation w a s  used t o  
f i l l  the narrow bottom va l ley  of the channel. The 
s i l i c a  overwrap next t o  the  s t e e l  was extended far- 
t h e r  up the  back s ide  of the l i p  and the  ablative 
material i n  one region w a s  changed from s i l i c a  tape 
t o  carbon phenolic tape. 

The r e s u l t s  obtained with the  new nozzle con- 
tour ,  which conformed c lose ly  t o  the  modified SL-3 
nozzle, and with the  f u l l  gra in  with flat ends are 
presented i n  figure 14. The results indicated t h a t  
t h e  flow Mach numbers w e r e  considerably lower than 
those obtained with the o r ig ina l  nozzle and the 
same grain. The flow pa t te rns  w e r e  i n  general  s i m -  
i l a r  t o  those with t h e  first nozzle. With the  in- 
creased protection aga ins t  erosion and the lower 
channel flow ve loc i t i e s  indicated by the r e s u l t s  
with the new nozzle, t h e  SL-3 nozzle should w i t h -  
stand the  f i r i n g  as far as erosion i n  t h e  annular 
channel i s  concerned. The r e s u l t s  w i t h  t h e  34- 
percent regressed grain are presented i n  figure 15 
and show fu r the r  reductions i n  the flow ve loc i t ies .  
It is  probable t h a t  by the  t i m e  t he  gra in  has erod- 
ed 50 percent t he  circumferential  flow i n  t h e  annu- 
lar passage w i l l  be v i r t u a l l y  eliminated. 

In  addition t o  i t s  e f f e c t s  on the  flow in  the  
annular channel, t h e  assymetric grain por t  w i l l  
a l s o  d i s t o r t  t h e  flow i n  the  nozzle, with possible 
reductions i n  the  flow coef f ic ien t  and uneven ero- 
sion of t h e  ab la t ive  surfaces. The circumferential  
Mach number var ia t ions  f o r  two nozzle s t a t ions  a r e  
presented i n  f igu re  16. With the  100-percent grain 
there was r e l a t i v e l y  l i t t l e  circumferential  Mach 
number va r i a t ion  a t  s t a t i o n  1 near the  nozzle 
th roa t  (figure 13) whereas a t  a s t a t ion  3, upstream 
i n  the  entrance region, lower Mach numbers ocurred 
i n  the  region d i r e c t l y  behind t h e  grain than a t  t he  
p i n t  midway between the  grain lobes. With the  34- 
percent regressed grain, however, t he re  was very 
l i t t l e  d i s to r t ion  a t  e i t h e r  nozzle s ta t ion .  The 
Mach number var ia t ions  indicated by f igure  16 do 
not present any serious performance deficiencies,  
however, and any uneven erosion i n  the  lower Mach 
number regions of the  nozzle would tend t o  d i s -  
appear as the  grain burning progresses. 

SUMMARY OF RESULJL 

Tests of  an 0.07-scale compressed-air model of 
the 260-inch so l id  rocket w i t h ,  a suhmerged nozzle 
indicated t h a t  the  assymetric gra in  por t  shape in- 
duced a circumferential  flow jn  the  annular passage 
between t h e  submerged nozzle l i p  and the  aft-end 
casing. 
z l e  t o  provide increased insu la t ion  against  the  
erosive e f f e c t s  of t he  hot exhaust gases in  t h e  an- 
nular channel a l so  reduced the flow ve loc i t i e s  i n  
the  channel. Simulated erosion of t h e  gra in  due t o  
burning a l so  g rea t ly  reduced the  flow ve loc i t i e s  i n  
t h i s  area. Some d i s to r t ion  of  the flow i n  the  noz- 
z l e  was  a l so  observed pa r t i cu la r ly  with the  100- 
percent grain.  

Subsequent modifications t o  the  SL-3 noz- 
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Figure 1. - Submerged nozzle concept. 

Figure 2. - Possible flow pattern in SL-3 motor. 



Figure 3. - Model test setup in altitude chamber. 

Figure 4. - Model setup in atmospheric test facility. 



Figure 5. - Model nozzle I. 

Figure 6. - Model transparent aft-end casing. 
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Figure 7. - Simulated propellant grains. 
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Figure 8. - Grain lobe end modification. 
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Figure 9. - Comparison of SL-3 and model nozzle I contour. 

Figure 10. - Annular channel flow characteristics, 100% grain, flat lobe 
ends, nozzle I. 



Figure 11. - Annular channel flow characteristics, 100% grain, 90" wedge 
lobeends, nozzle I. 

Figure 12. - Annular channel flow characteristics, 34Y0 regressed grain, 
nozzle I. 
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Figure 13. - Modifications to SL-3 nozzle. 

Figure 14. - Annular  channel flow characteristics, 100% grain, flat ends, 
nozzle 11. 
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Figure 15. - Annular channel flow characteristics, 34%-regressed grain, 
nozzle 11. 
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Figure 16. - Nozzle flow distortion due to assymetric grain port. 
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